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1. INTRODUCTION

Let X be a real normed linear space and V a proximinal subset of X. To
each element f'in X wc associate the set

Pu(f):={eoe Viif— 1y = z?ﬁ If— v,

which is called the set of best approximations for f by elements of V. Thus
we obtain a set-valued mapping P, , which carries the normed linear space X
into the set of the closed nonvoid subsets of V. This set-valued mapping is
called the metric projection associated with V.

For set-valued mappings concepts of continuity are defined as follows
(cf. Hahn [5]):

DeriniTION 1. () The metric projection P, is called upper semi-
continuous (usc) if the set

(feX:PUf)NK + &}

is closed whenever K is a closed subset of V.
(b) The metric projection is called lower semicontinuous (Isc) if the set

SeX:  P(f)n U+ &}
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Copyright © 1973 by Academic Press, Inc.
All rights of reproduction in any form reserved.



CONTINUITY OF THE METRIC PROJECTION 85

is open whenever U is an open subset of V. (The topology on V is understood
to be induced by the norm-topology of X).

The metric projection Py is usc or Isc only for restricted classes of subsets V.
Singer 8], for example, has proved that the metric projection associated with
an approximatively compact subset ' of a normed linear space is usc. Hence,
in particular, Py is usc whenever V' is a linear subspace of finite dimension.
But even if V' is a linear subspace of finite dimension, P, may fail to be Isc,
as Blatter, Morris, and Wulbert [2] have shown.

In this paper, we first prove a general criterion which is sufficient for the
fower semicontinuity of the metric projection associated with certain sub-
spaces of a normed linear space. As a consequence of this criterion, we obtain
a result of Brosowski et al. [4]. Further we apply our criterion to derive a
sufficient condition for the lower semicontinuity of the metric projection
associated with certain linear subspaces of C(T, X), where T is a locally
compact Hausdorff-space, X is a strictly convex normed linear space, and
CT, X) 1s the set of all continuous functions f: T —> X which vanish at
infinity, provided with the norm |} /1 == max,.¢ || f(H)lx .

We shall show that in C(7T, X) the criterion thus obtained is also necessary
for the lower semicontinuity of P, . This generalizes the results of Blatter [1],
Blatter, Morris, and Wulbert [2], and Brosowski et al. [3].

Furthermore, we apply our general sufficient criterion to prove the
sufficiency of a criterion stated by Lazar, Wulbert, and Morris [6] for the
lower semicontinuity of the metric projection associated with finite-
dimensional linear subspaces of L (T, K, u), where (T, &, p) is a o-finite
measure space.

2. A SurriCIENT CONDITION FOR THE LOWER SEMICONTINUITY OF P,

We first state some necessary definitions. For X a normed linear space,
we define

Sxyr={xeX x| <1}
and
&x = Ep(Sy)
where Ep(A) denotes the set of extreme points of a set 4. For fe X, we set
o= X" eSSy X'(F) =1

and

Eri=A{x"edx 1 X'(f) = fI}
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As is well known, &, = X, N &y . We use the terms o-topology and og,-
topology to denote the restrictions of the weak topology o(X’, X) on the sets
Sy and &y, respectively. For V a proximinal linear subspace of X and f'in X
with 0 € P.(f). we define the set

Ny () 4

veP (1)

S () - 0.

m

4

The subscript ¥ will be omitted if it is understood from the context. Finally,
we define

E(fi V)= lﬂ£ ff -
Now we prove the following.

LemMma 2. Let A be a subset of & x and f an element in X. Then the
inequaliry
sup X(f) -~ f]
x'eA
holds if and only if there exists a o( X', X)-open convex subset U of X' such that
ExADUNE D6,

Proof.  Let A be a subset of § v . Whenever

Scomsup N(fY S

x'ed
then there is an ¢ > 0 so that s = I/} - e. For the o(X’. X)-open convex
set
Ui=A{x"eX :xX(f) ~if €.
we have A N U —= @, and hence A N (U N & ) — . Thus we obtain

EVADUNE D6, .
To prove the inverse implication, we assume that U is a o(X'. X)-open
convex subset of X' such that
EADUNE ¢ D,
Then
sup X'(f) = sup Xy == osup N(f) . osup X(f)

x'ed XS MUNE ) xesyi U xSy U
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The Krein-Milman theorem yields X; = con &, . Since U is convex,
and contains ¢, there follows U D con &, . We show that U D 2. In fact,
suppose that there is an element x,” in Z; which is not in U. Then x, is in
the boundary of U, and, since U is open and convex, there exists an element
g € X such that x,(g) = inf, .. v'(g). Define

Hi={x"e X" : xX'(g) = xy/(g)-
Since Uis open, HN U = 1. Using X, C U we obtain
Xo'tg) = inf 1(g),

whence A N X, is an extremal subset of X, . Therefore H N 2, contains an
extreme point x;" of 2. In view of &, C U we have x;"e€ H N {. which
contradicts H N U = ¢r. Thus we have U D2, and finally, since Sx\U is
compact,
sup  X'(f) << 1/
XESp\U
This completes the proof.
We are now ready to prove the following.

THEOREM 3. Let V be a proximinal linear subspace of a normed linear
space X with the properties:

(1) for each fe X, dim P, (f) << oo,

(2) the metric projection Py is usc.

Whenever for each element fin X with O € P,(f) there exists a a(X', X)-open
convex subset U of X' such that

WOUNELD () Ern

r€P(f)

then P, is Isc.

Procf. We assume that there exists a point fin X so that P, is not Isc
in /. Then there exists a sequence {f,} of elements f,, in X, an element v, in
P,(f)and a neighborhood U, of v, such that { f,,} converges to fand

PV(fn)n Uo: 1]

for each . The set P,(f) is convex and, since Py, is usc, consists of more than
one point. We may assume without loss of generality that v, is a relative
interior point of P,(f). Replacing f by f — v, if necessary, we may assume
that ¢, = 0.
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Then it follows that
N, O m S, 6,

TEP ()
For each g € X the set Py(g) is closed, bounded and finite-dimensional, and

hence compact. Since P, is usc, the set

Pu(fyv U Pulf)

neN

is compact (cf. Michael [7]). Consequently there is a subsequence of {f,!
(which we denote again by {f,}), so that there exist elementsz i Pu(f,)
in such a way that the sequence {¢,} converges to an element ¢ in V. Then
t’ € Pu(f), and furthermore ¢ == 0 since P,(f,) N Uy == ¢ for all ne N.

Following Brosowski e al. [4], we can now construct a sequence {u,} of
elements u, in X with the following properties:

(a) the sequence {u,} converges to ¢";
(b) for each n e N there holds

=, ECf V)
(¢) there exists an integer n, € N so that
[ f = u, -0 > E(fi V) forall w = n, .
Such a sequence may be defined explicitly by
Uy = f = (E(SSV)E( 2 VXS,

Obviously this sequence has properties (a) and (b). To show that {u,! also
shares property (c), we note thatl| f — u, =4- ¢"ll == E(f: V), since
S, = 0= (ESVES s VI = (e, = (B, DV)ES V) ED). (1)

If there is some subsequence of {u,! (again denoted by i{u,}) such that
| f— u, - "l = E(f; V), then, by (1), the element

o= o - ng‘_’_,,,
n - n E(f‘; V)

Forn > nyand x’' € /f_“ 4~ we have
E(f V) < “f Uy, \W ‘\
= X (f‘ U, + l') = -Y/(.f - ll,,) i x,(l'l,)
CE(f V) = Y@,
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which yields x'(¢") > 0. Hence we obtain
NN Sy = for n>n,. (2)
On the other hand, by hypothesis, there exists a o(X’, X)-open convex
subset U of X' so that
NOUNEwDE,,

and, by Lemma 2,
sup  xX'(f) << Lfll = E(f; V).

x'efy\U

Hence there exists a real number € > 0 such that
X(f) S E(fiV)—«

for each x" € &x\U. The sequence {i1,} converges to ¢'. Therefore we have
“u, — v |, < e for sufficiently large »#. and consequently

X(f—u, =Yy <Ef;V)

for all x’ in &4xA\U, in particular for x” in &\9%,. Thus we obtain for
sufficiently large n the inclusion W, D ¢&,_, ,,» which contradicts (2). The
theorem is thus proved.

A consequence of Theorem 3 is the following result of Brosowski er al. {4].

THEOREM 4. Letr V be a proximinal linear subspace of a normed linear
space X with the properties (1), (2) of Theorem 3 and the following additional
property:

The set & v is o-closed. (3)

Whenever for each element [ in X with O € P,(f) there exists a o-open subset A
of Sx' such that

WO4nExD () 6o

vePy(f)
then the metric projection Py is lsc.

Proof. In view of property (3), the set €x- is o-compact. Hence we obtain

sup x'(f) < i/l

x’E(‘)"X'\

640/8/1-8
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and, using the hypothesis,

sup  xf) -

xeSy M,

Thus, by Lemma 2, there 1s a o(X”, X' )-open convex subset ' of X’ such that
W, DOUNE, O, , and Theorem 3 vields the lower semicontinuity of P, .

3. APPLICATIONS IN SOME SPECIAL SPACES

Let 7" be a locally compact Hausdorft space, and X a strictly convex real
normed linear space. We denote by C(7. X) the set of continuous functions
f: T — X vanishing at infinity, that is. a continuous function f'is in Cy(T, X)
if and only if, for each € > 0, the set

tel: fl) e

is compact. If addition and multiplication with scalars are defined for elements
in C(7T, X) in the same way as for vector-valued functions, and the norm

e maxe f(t)

is introduced, then C(7, X)is a normed linear space. Whenever it is necessary
to distinguish between the norms in Cy(7. X) and X we denote the latter

byl - llx-
For V a proximinal subspace of Cy(7. X). f an element in C(7, X} with
0¢e Py(f), and r, an element in P(f). we define
Neyi= () {r=T:0)=0;
PEPC)
and
"’Llf*fu: = {t eT: \f({) Z'U(f) X ‘f Uy };

The subscript ¥ will be omitted if it is understood from the context.
Now we prove the following.

LEMMA 5. Let V be a proximinal linear subspace of C(T, X), where X is
strictly convex. Then

Nf 2 ﬂ ‘/‘1/’ v

vEP AT

Jfor each element fin Co(T, X) with 0 in P.(f).
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Proof. Let t be in (Voer,(n M, . Since 0 Py(f), for each r in Py(f)
the element v is also in P(f). Hence

@) — seli = MWD+ @) — ).
In view of the strict convexity of X, there is a positive real number u such that

(1) = p(f (1) = e()).

Using {| f(O) = {1 f(t) — v(r)!], we obtain p == 1 and finally (1) == 0, whence
te N,

Now we give a sufficient criterion for the lower semicontinuity of P, in
C(T, X).

THEOREM 6. Let V be a proximinal linear subspace of the space
Z = CyT, X)), where T is a locally compact Hausdorff space, and X is a
strictly convex space. Assume that the following requirements hold:

(1) for each f in Z, dim P (f) << oc:
(2) the metric projection P is usc.

Whenever for each f in Z with 0 e P.(f) the set N; is open then the metric
projection is Isc.

Proof. The set N; is defined to be the intersection of the closed sets
{teT:uv(t) = 0}, ve Py(f), hence it is closed. Since N, is also open by
hypothesis, the function g defined by

() for ¢ N,,

l) = .
80—y for tin T\N,,
is in Cy(T, X). The set

U:=4{eZ ::(g) >0}

is a o(Z’, Z)-open and convex subset of Z'.

The functionals in & 2~ are generalized evaluation functionals L, , , that is,
there exist elements x' € £ and t € T such that

Lo (h) = X' (1) for  he CyT, X).

By definition of U, for each functional L,- ; € €2 N U, the equality

Ly fv) = X'(0(1)) = x'(0) = 0
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holds for all ¢ in P,.(f), whence we conclude W, D &', N U. Using Lemma 5.
we obtain the inclusion

E,0U0D () 6,

2Py

Thus the requirements of Theorem 3 are fulfilled, whence the lower semi-
continuity of P, follows.

Remarks. Special cases of Theorem 6 have appeared in the literature.
For T compact and X the real axis, the theorem was proved by Blatter,
Morris, and Wulbert [2]. For T locally compact and X a pre-Hilbert space,
the result was obtained by Brosowski ef al. [4].

Now let X be the space L (T, &, u). where (7, &, p) is a o-finite measure
space. The dual space X' is identical to L (7. &, ). For [ a real-valued
function defined on 7, we set

supp(f):=1teT: f(t) - O},
Z(f):~{reT:f(r) = 0
S(fy:={teT: ftry -~ sup|fis)..

seT

These sets are defined only up to sets of zero measure.
In addition. we define for each linear subspace V of X the orthogonal space

V= 1{x"e X" : x'(r) = O0foreachve V.

Lazar, Wulbert. and Morris [6] proved the following criterion.

THEOREM 7. Let (T, 8, u) be a o-finite measure space, and let V' be an
n-dimensional linear subspace of L(T. R, p). The metric projection P, is lsc
if and only if there does not exist an X" in V. X" -+ 0, and a v in V for which

(1) S(x')is purely atomic, and contains at most n — | atoms,
(2) Z(v) contains S(x'),
(3) supp (v) is not the union of a finite family of atoms.

We give a new proof for the sufficiency of this criterion by showing that

the condition of Lazar, Wulbert, and Morris implies the condition of

Theorem 3. From this, it follows in the case X = L(7, &, u) that the con-
dition of Theorem 3 is also necessary for the lower semicontinuity of P .

Proof of the sufficiency of the criterion in Theorem 7. We suppose that the
condition of Theorem 7 holds but that there exists an element fe L, with
0 ¢ P,(f) (without loss of generality we may even assume that 0 is a relative
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interior point of Py {f)) such that N, does not contain U N & y- whenever U
is a o(X'. X)-open convex subset of X' with Un &y D¢,

First we show that there exists an element € in P.(f) such that supp(?) is
not the union of a finite family of atoms.

To prove this. we suppose that for each ¢ in Py(f), the support supp(v)
is a union of a finite number of atoms. Then there exist atoms A4, ..., Ay
such that

supp(e) C A = A U - U Ay

for each v in P.(f).

For every ve Pi(f) and every x"e€d,. we have x'(¢) = 0. Since the
functionals x" € &, (interpreted as functions in L.) may be chosen outside
supp (/) arbitrarily retaining only the requirement | x'(¢) | = 1, there must
be supp(r) Csupp(f) for all ve Pu(f). Therefore one may assume

A C supp(f).
Corresponding to the set

W= {x"edy : xX(t) == sign(f(t)) for t € A}

there exists a o X', X)-open convex subset U of X' so that W -~ U ¢,
namely, e.g.
U == i.\" eX': ‘ X xa(t) - f())dp = Oforv = 1., N:
¢ ©T
where X4, denotes the characteristic function of the set 4, . In addition, we
have
MOW=UNEe DS, .

Since such a relation was exciuded by the choice of f, we have proved our
assertion that there exists some element @ in P.(f) such that supp(?) is not
the union of a finite number of atoms.

Now [et

Vi={&eSy :x'() =0forallvel,
x'(t) — sign(f (1)) for 1 € supp(f)}.

then Y’ is convex and o-compact. By the well-known theorem of charac-
terization of best approximations, there exists a functional x" € Z; such that
x'(r) = 0 for all v in V. Since this x" is in Y’, the set Y’ is nonvoid. Hence
there exists some extreme point v' of ¥'. By construction, we have | y'(f): == |
for 1 = supp(f). Since supp(¥) C supp(f) it follows that Z(3) D S(').

Now we show that S()”") is purely atomic and consists of at most 7 — 1
atoms. Let ¢4, ... v be a basis for V with ! = &,
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First we exclude that S(y”) contains a nonatomic part. In fact, let 8 C S( ')
be a nonatomic subset of (1) with w(B) -+ 0. Then there exists € > 0 so that

Byi={reB:iy(t)y 1~ e

has u(B;) := 0. Then there exists a function z' ¢Sy, z° 0, such that
supp(z’) C B; and fBI )ity du = 0 for i = 1...n For either sign,
¥ -4 ez'isin Y. This contradicts the fact that " is an extreme point of Y.

Now let us suppose S(y)2D B == B, U -~ U B, , where B, are atoms. It
follows that € 1= 1 — ess-sup,.5 | ¥'(1); = 0. Let v,/ be the value of ¢’ on the
atom B, . The system of equalities

Y a (B = 0, [= 2,..,n, (4)

a1

has a nonzero solution «,°,.... v,” with ; «,% - 1 for all . Hence for either
sign the function z’, defined by

y () et for teB,

F0= for r¢B"

is in Y’. This is impossible since y* is an extreme point of }¥'. Therefore S(1")
contains at most # — 1 atoms.

So far, we have constructed elements eV and y' ¢ Y V' which fulfil
the requirements (1), (2), and (3) of Theorem 7. But the condition of
Theorem 7 states that such elements do not exist. Hence our assumption is
not correct. Thus we have proved, that the condition of Lazar, Wulbert, and
Morris implies the condition of Theorem 3. Since the latter is sufficient for
the lower semicontinuity of P, the sufficiency part of Theorem 7 is proved.

4. THE NECESSITY OF THE CRITERION IN THE SPACE C(T, X)

In this paragraph, we show that the sufficient condition of Theorem 6 is
also necessary if the space under consideration is C,(7, X). where X is strictly
convex. First we prove the following lemma.

LemMmA 8. Let V be a linear subspace of C(T, X), and let f and g be elements
in C(T, X) with
(a) I/ =1lgl;
(b) 0ePyu(f)and 0c Py(g):
(¢c) there is a neighbourhood U of M; such that f(t) — g(t) for t € U.
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Then PiAg) is comtained in span Py(f), i.c.. in the linear subspace of V which
is spanned by Pi(f).

Proof. Given an element r < 0 in Py(g). let A be the positive number

Ao min(l (f, - EXaci).
with

L*c=osup G (0 - B S
1eT\U
By virtue of hypothesis (b), the element ¢, : == Aris also in Pp(g). We have for
tin L

PA) = () =g ey g =

andforte T U
FQy — oty i fay =) < EX (T = EX) =

Hence the element ¢ is a best approximation for f, and ¢ == (1/A) r| is in
span Pp(f).
We are now in position to prove the main result of this paragraph.

THeOREM 9. Let T be a locally compact Hausdorff space, X a strictly
convex normed linear space, and let V be a proximinal linear subspace of
Cot T2 X)) such that dim P(f) < <o for all fin C(T, X). Whenever the metric
projection Py is Isc, then, for each fin C(T, X) with O in Pi(f), the set

N, = ﬂ {teT:r(r) =0

2EP ()
is open.

Proof.  We suppose the theorem is false, that is, there exists an element
fiin Cy(T, X) with 0 € Pu(f;) such that N;_ is not open. Then f; is not in V,
since otherwise Pr(f1} == {f;} and N; = T would be open. Without loss of
generality we may assume || /7 [ == 1.

Now let vy ,..., ;, be linear independent elements in P,(f;) which span the
linear subspace ¥, 1= span P.(f;) of V.

Since Ny, is not open, there is 4 point 7, in Ny with the property:

(E) every neighborhood U of ¢, contains some point 7, such that
r{ty) = 0 for at least one x € {1,..., k.

Now we construct a function f as follows. In the case f, is in M; , we define
S0 fi Higis notin M, , then we first choose an element r in X such that



96 BROSOWSKI AND WEGMANN
et Tand v — fi(r)'x - 1 — 1 filty)lix . A possible choice is, for instance.

ro= ) A x

in the case fi(¢,) == 0. If fi(z,) - O. each » with i ri = | will do. Since 1,
is not in the closed set M, . there s a compact neighborhood U of ¢, such
that M, N U == o From 1, & N, there follows for « 1.0k

rty) = 0
and

L) — edrgy = A < T
By reducing U, if necessary, we can ensure that. for all 7 £ U,

) - e < L )=l k
and

- fie - 0.

There exists a continuous function p,(t) such that O - py(r) =2 | for all
1T, pty) = 1, and py(r) = O for + ¢ U. In addition, we put

pe(t) = min (1= fy(6) e 0)DfLr = (1))
and
pa(t) == min(py(t), max(0, p(1))).

We complete the definition of p, and p, by setting pu(1) == py(r) == 0 for those
t which have r — fi(1) == 0, and thus obtain a continuous function p; with
0 < pg(r) sc 1 forall reT, py(ty) = 1, and py(t) = O for 7= T U. Now we
define the function f'by

F(0) i= (1 — pa(1) fi(t) + palt) - .

This function has the property that f(¢:) - fi(¢) for all 7 in T U, and
f(t)) = r, whence || f(z,)ll = | and 1,€ M, . Since T\U is. by construction,
an open set containing M, , it follows that M, C M;, 0¢ Py(f), and finally
from Lemma 8, P,.(f) C V, . Foreach rin 7 and each « = 1...., k we have

) = v ) = LA — e l8) S pa - fUO)
A — e )+ ps(D - fild)i
LA = o0 + max(O, p(0)i r — [ < 1.
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Hence all ¢, ...., r, are in Pu(f) and, since 0 is also in P,.(}), the element
vy 1= (v + o)tk = 1)

is a relative interior point of P.(f). Then 0 is a relative interior point of
Pp(g) where g := f — r,.
For each ¢ in 7, we have

g = 1 (1) — uy(1).
1 k

e 0 Y ) = )

wa-l

1 ( h .
ST MO Y0 el =

with equality if and only if v.(t) = O for all « = 1,..., k, thatis r = .V, . Hence
there follows

1W,J C N_,, — Nf .

Because 1, is not an interior point of N,, there is a net (#,: Ae ) of
points 7, in T such that (¢,) converges to t, and, for each A, v, (¢,) = 0 at least
for one «. Then there exists an index k, and a subnet (¢, : A €.1,) such that
v, (1:) 7 0 for all 7, with Aed; . We may assume «, = .

Now we consider two cases.

First case. There is a subnet (r,: Ae ) of (¢, : Ae /) such that for
every A€/, there exists some functional x," €&, ) with x,'(¢,(1,)) = 0.
By passing once more to a subnet (7, : A € /3), we can ensure that there exist
signs €, € {—1, -+ 1} such that the inequalities

€X' (1,(13)) < 0
and
€.x,(r.(1)) =< 0, for «=2,..,k,
hold.
For each 8 > 0, the set
Asi={teT:]g(t) — gty < 8}

is a neighborhood of ¢,. Hence there exists A € /A, such that ¢, ¢ 4, . Since
M, C N,and 1, ¢ N, , it follows that r, ¢ M, . Since M, is closed, there exists
a compact neighborhood W of ¢, such that M, " W = . Without loss



98 BROSOWSKI AND WEGMANN

of generality, we assume W C A4, . Now let p be a continuous {unction such
that 0 - p(1) 1forteT. p(t) l.p(r) - Oforr« T W.and define

gult) 1= pltyglty) (1 pl)) gtr).

Then the function g, is in Co(7. X). and g, ¢ = o. Furthermore. we
have forallre T

Lgs(t)] - p() glty) i 1+ (1 — plr)y gty g .

and for ¢ = T\ W the equality gs(r) = . The set 7" is a neighborhood
of M, . Therefore we have M,, D M_,, , and hence 0 € Py(g;). Using Lemma 8.
we obtain P;(g;) C V', . For each element « in the set

B, i~ ‘Z aer eV ia, - 0fork - 1o k'
=1
there follows

L gs —ul = ¢ gilfy) - ult)

et Y e

o \/\ rl)) z a.e, '\.;\’Ii»‘(,)

and consequently B, N Py(g,;) = .
If the net (7, : A € A} does not satisfy the conditions of the first case, then
we must consider the alternative possibility.

Second case. There is a subnet (r,: Ac ) of (r,: Az.1)) such that
X'(ty(t)) - Oforall Ae A, and x" e €au, - Let x,” be an arbitrary functional
&, .o - Then x,” is not in &, , since X is strictly convex, and v.(ty)
is not proportional to g(#,). Hence it follows that

2 (g(1e)) <0 g,y
Oun the other hand we have, for " ¢ &, .
g(ty) — vyl = ¥'(g(ty) — ¥ = gliy) -
and therefore

fgleh 0 glty) + vy(t)ll — -'\'A((g(’o) o)) < gl - X (e (6)),
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whence it follows that

Fglty) + (R = 1 (5)

and x,'(¢4(t,)) = 0 for each Ain /1, .
There are signs €, :== —1 and e,. €;,.... ¢, €{—1, -+ 1} such that for a
suitable subnet (7, : A € /1) the inequalities

Elx,\l(l‘l(t)\)) <0
and
€., (v (1) <20, for =23, k,
hold. For 8 > 0, the set

Ayi= e T2 igln) — g()] < 8/3, | uy(0)| < 83

and 1 g(r)) + (D)l — 1] < §/3]

is an open neighborhood of 1,. Hence there is A e A, such that 7,¢ 4, .
Furthermore, there exists a compact neighborhood W of r, such that
M, W = o and W C A,, and there is a continuous function p such that
0 <t p() = IforteT. p(t,) = 1,and p(r) = O for € T\W. The mapping

glty) + vi(ty)

A= PO Ty o)

+ (1 — p(1)) g(t)

isin Cy(T, X). By using (5), we obtain for 1 in A,

g(to):iﬁ@‘ B i
1 &(te) -+ ()i g H

| gslt) — g(1) = p(t)ii

g - gty 0 s )

(1 glty) - n(n)) g0
< gl — O+ e+ 11— | glte) + (e < 6.

For ¢ not in A4; the equality g,(t) = g(t) holds, and hence || g; — g | < 3. By
construction, we have || g5 Il = 1. Since g,(f) = g(¢) for ¢ in the neighborhood
T\W of M, , it follows that /\/I_,,’S 2 M, , hence Oisin Py(g;), and, by Lemma §,
Py(gs) C Vs

For each element u in

|

.
L . -
B, = ’ZlaKGKUK eVyia, > 0forall x|
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there follows

Pgeomaud o gl -oulny)

i

oy (gs(fﬂ) - }: a/\f:\»l}((’,a))

[

L 8Lg) - vylny) . v
S P ae x, vty L.
' (f glty) = 1‘1(1‘,\):5-) ,Zl d Ol
whence B, N P.(g;) —
Thus in either case we have the following situation. The set B, 1s open
(in V). and contains the zero element in its boundary. Since 0 is an interior

point of P(g) (relative to V), it follows that P.{g) N B, ~© . On the other
hand for each & = O there exists a g; in C(T, X) with! ¢ ¢, - & and
Pu(gs) N B, == . This contradicts the lower semicontinuity of P, . Thus the

theorem is proved.

Remarks. Inthe case T compact and X the real axis, Theorem 9 specializes
to a result of Blatter, Morris, and Wulbert [2]. The special case of Theorem 9,
when X is a pre-Hilbert space, was proved by Brosowski et af. [3]. but only for
locally compact spaces 7 which have additional properties.
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